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SUMMARY

In the present study, we propose an implicit, unconditionally stable high order compact (HOC) �nite
di�erence scheme for the unsteady two-dimensional (2-D) convection–di�usion equations. The scheme
is second-order accurate in time and fourth-order accurate in space. The stencil requires nine points
at the nth and �ve points at the (n + 1)th time level and is therefore termed a (9; 5) HOC scheme.
It e�ciently captures both transient and steady solutions of linear and nonlinear convection–di�usion
equations with Dirichlet as well as Neumann boundary conditions. It is applied to a linear Gaussian
pulse problem, a linear 2-D Schr�odinger equation and the lid driven square cavity �ow governed by the
2-D incompressible Navier–Stokes (N–S) equations. The results are presented and are compared with
established numerical results. Excellent comparison is obtained in all the cases. Copyright ? 2005 John
Wiley & Sons, Ltd.
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1. INTRODUCTION

The unsteady 2-D convection–di�usion equation with variable coe�cients for a transport
variable � in some continuous domain with suitable boundary conditions is given by

a
@�
@t

− ∇2�+ c(x; y; t)
@�
@x
+ d(x; y; t)

@�
@y
= g(x; y; t) (1)

where a is a constant, c and d are the convection coe�cients, and g is a forcing function.
The equation represents convection–di�usion of many �uid variables such as mass, heat,
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energy, vorticity, etc. With proper choice of a, c, d and g, it can also represent the complete
Navier–Stokes (N–S) equations. As such, it has been an area of intense research in past
few years [1–11].
Various schemes have been developed for problems based on Equation (1). Quite recently,

HOC �nite di�erence methods [2, 3, 5–9, 11–15] have become quite popular as against the
other lower order accurate schemes which require high mesh re�nement and hence are com-
putationally ine�cient. On the other hand, the higher order accuracy of the HOC methods
combined with the compactness of the di�erence stencil yields highly accurate numerical
solutions on relatively coarser grids with greater computational e�ciency. Of these, Kalita
et al. [5] developed a class of HOC schemes for the unsteady 2-D convection–di�usion equa-
tion with variable coe�cients which requires either nine or �ve points at the nth and (n+1)th
time levels. Accordingly, they are termed as (9; 5), (9; 9) or (5; 9) schemes.
Among these schemes, the (9; 5) scheme in spite of having fourth-order spatial accu-

racy and smallest of band-widths of the resultant coe�cient matrix amongst all the three
schemes, su�ered from a low �rst-order temporal accuracy and conditional stability. On
the other hand, the (9; 9) scheme was not only temporally second-order accurate but also
unconditionally stable. Thus it was able to accurately capture the transient solutions to
unsteady 2-D convection–di�usion equation. But a relatively large matrix band-width of
the coe�cient matrix for this scheme resulted in an increased number of arithmetic
operations.
The present work proposes an improved form of (9; 5) scheme which is fourth-order accurate

in space and second-order accurate in time, is unconditionally stable and still uses the same
(9; 5) di�erence stencil of �ve points at the (n + 1)th time level and nine points at the nth
time level. In the process, the work also intends to extend the idea of the HOC scheme to
a more general 2-D second-order partial di�erential equation given by

a
@�
@t

− ∇2�+ c(x; y; t)
@�
@x
+ d(x; y; t)

@�
@y
+ �(x; y; t)�= g(x; y; t) (2)

where the additional coe�cient � may be termed as the potential function. In addition to the
already-mentioned utilities of Equation (1), Equation (2) can also be used to represent transient
reaction–di�usion equation. With constant a= i where i=

√−1, it can also be represented as
a linear 2D Schr�odinger equation.
The proposed scheme is able to solve very accurately and e�ciently the unsteady 2-D

convection–di�usion problems including 2-D incompressible N–S equations and the linear
2-D Schr�odinger equation. The merit of the present scheme for transient problems lies on
its temporal accuracy coupled with the CPU time-wise e�ciency owing to a more compact
di�erence stencil. To test the robustness, accuracy and e�ciency of the scheme, it is applied
to three pertinent test cases for which the numerical and=or analytical results are available. We
also carry out error analysis wherever analytical solutions are available. Results are compared
with those obtained by the (9; 9) and (9; 5) scheme of Reference [5], and well established
results from various other schemes.
The paper has been arranged in four sections. Section 2 deals with discretization and issues

related to it, Section 3 with the numerical test cases and �nally, Section 4 summarizes the
whole work.
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2. DISCRETIZATION AND RELATED ISSUES

Assuming the problem domain to be rectangular and constructing on it a uniform rectan-
gular mesh of steps h and k in the x- and y-directions respectively, the standard forward-
time centred space (FTCS) approximation to Equation (2) at the (i; j)th node is
given by

(a�+t − �2x − �2y + c�x + d�y + �)�ij − �ij= gij (3)

where �ij denotes �(xi; yj); �x, �2x and �y, �2y are the �rst and second-order central dif-
ference operators along x- and y-directions respectively, and �+t is the �rst-order forward
di�erence operator for time. The truncation error �ij with a uniform time step �t is
given by

�ij=
[
a
�t
2
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@x3
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12

(
2d
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@y3
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@y 4

)]
ij
+O(�t2; h4; k 4) (4)

To obtain a second-order time accurate and spatially fourth-order compact formulation for
(3), each of the derivatives of the leading term of (4) are compactly approximated [15, 16]
to O(�t; h2; k2). In order to accomplish this, the original PDE of Equation (2) is treated as
an auxiliary relation that can be di�erentiated to yield expressions for higher derivatives. For
example, using forward temporal di�erence for the transport variable � and backward di�er-
ence for c, d, � and g (see the note at the end of the section), the derivative in the �rst term
on the right-hand side of (4) can be written as

a
@2�
@t2

∣∣∣∣
ij
= (�2x + �2y − cij�x − dij�y − � ij)�+t �ij − (�−

t cij�x + �−
t dij�y + �−

t � ij)�ij

+ �−
t gij +O(�t; h2; k2) (5)

where �−
t is the �rst-order temporal backward di�erence operator. Similar approximations

can be constructed for the spatial derivatives as well. Thus replacing the derivatives in
Equation (4) with approximations such as Equation (5) and subsequent substitution for �ij
in Equation (3) yields an O(�t2; h4; k 4) approximation for Equation (2) on a (9; 5) stencil
(see Figure 1) as

a
[
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h2

12
− �t
2a

)
(�2x − cij�x) +
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k2

12
− �t
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)
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� ij

]
�+t �ij

+(−�ij�2x − �ij�2y + Cij�x +Dij�y + Eij)�ij

− (h
2 + k2)
12

(�2x �
2
y − cij�x�2y − dij�2x �y − �ij�x�y)�ij = Gij (6)
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Figure 1. Unsteady (9; 5) HOC stencil.

where the coe�cients �ij, �ij, Cij, Dij, Eij, Gij and �ij are as follows:

�ij =1+
h2

12
(c2ij − 2�xcij − � ij)

�ij =1+
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12
(d2ij − 2�ydij − � ij)
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2

h2 + k2
(h2�xdij − k2�ycij)− cijdij
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With this (6) yields an implicit �nite di�erence scheme of accuracy O(�t2; h4; k 4). It may
be mentioned that in the earlier HOC schemes developed in Reference [5], time-discretization
was performed by considering the time derivative as a part of the source function of the steady-
state convection–di�usion equation. Then a weighted time averaging strategy was employed to
improve the temporal accuracy, which roped in some mixed space-derivative terms. As such,
the corner points also came into the picture resulting in a nine point stencil at the (n+ 1)th
time level. On the other hand, from Equations (4) and (5), we see that process of improving
the temporal accuracy for the present scheme involves no mixed space-derivatives. Therefore,
we are left with to deal with only �ve points at the (n+1)th time level. As the stencil requires
only the (i; j)th and its neighbouring four points (Figure 1) at the (n+ 1)th time level, this
scheme has also the potential to be extended as an alternate-direction-implicit (ADI) scheme
which will be discussed in a separate paper. Equation (6) can now be evaluated in terms of
system of equations that can be written in a matrix form as

AM(n+1) =f(M(n)) (7)

where the coe�cient matrix A is an asymmetric pentadiagonal sparse matrix. To solve the
system of Equation (7) biconjugate gradient stabilized method (BiCGStab) [17, 18] has been
employed without any preconditioning.
Note: If the closed forms of c, d, v and g are not known as in the case of N–S equations,
it is easier to approximate their time-derivatives with backward (than forward) di�erence with
the current and previous time-level values already known. With some suitable initialization
strategy, this can be easily accomplished (see Section 3.3).

3. NUMERICAL TEST CASES

In order to study the validity and e�ectiveness of the proposed scheme, it is applied to three
unsteady 2-D problems. These are: (i) convection–di�usion of a Gaussian pulse; (ii) the linear
2-D Schr�odinger equation; and (iii) the lid-driven cavity �ow. Problems (i) and (ii) have
analytical solutions, so Dirichlet boundary conditions are used for them while for the cavity
problem, both Dirichlet and Neumann boundary conditions are applied. All computations are
carried on a PC with Pentium 4 processor and 512mB RAM.

3.1. Problem 1

Consider Equation (2) with �= g=0 and constant convective coe�cients in the square 06x,
y62 with initial condition

�(x; y; 0)= exp[−a((x − 0:5)2 + (y − 0:5)2)]
An analytical solution to this problem is

�(x; y; t)=
1

(4t + 1)
exp

[
− a
(4t + 1)

((x − ct − 0:5)2 + (y − dt − 0:5)2)
]

The initial condition is a Gaussian pulse centred at (0:5; 0:5) having height 1. The boundary
conditions have been taken from the analytical solution. For the sake of comparison of the
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Table I. Error and CPU time ratios for problem 1 at t=1:25 with �t=0:0125 and h= k =0:025.

Method Average|error| Maximum|error| CPU time ratios with FTCS

FTCS 3:94× 10−3 1:21× 10−1 1
Upwind 2:65× 10−3 6:63× 10−2 2
Noye and Tan [7] 1:43× 10−5 4:84× 10−4 447:12
(9; 5) [5] 1:49× 10−3 3:74× 10−2 9.78
(5; 9) [5] 1:02× 10−3 2:25× 10−2 7.03
(9; 9) [5] 5:24× 10−5 1:19× 10−3 5.26
Present (9; 5) 7:77× 10−5 1:69× 10−3 3.11
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0.13
0.1
0.0

7

0.0
4

0.01

0.16

0.13

0.1

0.07

0.04

0.01

(a) (b)

Figure 2. Contour plots of the pulse in the subregion 16x; y62 at t=1:25 for: (a) (9; 5) scheme in
Reference [5]; and (b) the present (9; 5) scheme with �t=0:00625.

results with those of References [5, 7], we choose a=100, c=d=80 and t=1:25 at which
time the pulse moves to a position centred at (1:5; 1:5), now with height 16 .
The average and the maximum absolute errors of di�erent schemes at time t=1:25 captured

with �t=0:0125 and h= k=0:025 including the present one along with the ratio of their
CPU times with that of the explicit FTCS scheme have been presented in Table I. It can
be seen from the table that the accuracy of the present (9; 5) scheme is comparable with
the (9; 9) [5] scheme and it is far superior than the earlier (9; 5) [5] scheme. This is also
exempli�ed in Figure 2 where the pulse height contours are presented for the old and present
(9; 5) scheme at t=1:25 with �t=0:00625 and h= k=0:025. Whereas the present scheme
yields an accurate solution, the earlier (9; 5) scheme su�ers from the presence of in-built
numerical anti-di�usion resulting in the generation of elliptic contours (with pulse height
0.202492) which can be seen in Figure 2(a). On the other hand, the present (9; 5) scheme
gives a remarkably accurate solution (with pulse height 0.166325 against the analytical value
of 0.166667), free from di�usion or anti-di�usion, yielding a pulse which is indistinguishable
from the exact one as seen from Figure 2(b). It will be worthwhile to compare the CPU
time-wise e�ciency of the present (9; 5) scheme with the (9; 9) [5] scheme and the nine
point scheme of Noye and Tan [6, 7] as all of them are implicit and second-order accurate in
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Table II. Convergence rate of the present scheme: maximum |error|
comparisons on di�erent grid sizes for problem 1.

Maximum|error| Maximum|error|
Grid (at t=0:625) Rate (at t=1:25) Rate

41× 41 8:586× 10−3 3:512× 10−3

3.777 3.848
81× 81 6:261× 10−4 2:438× 10−4

4.001 3.952
161× 161 3:910× 10−5 1:575× 10−5

time. The CPU time ratio of the Noye and Tan scheme and (9; 9) [5] scheme to that of FTCS
scheme is 447.12 and 5.257, respectively. This ratio for the present scheme is 3.11, which
clearly shows the superior CPU time-wise e�ciency of the present scheme. This is because
at the (n+1)th time level the present scheme uses a smaller stencil of �ve points instead of
nine. In Table II, we present the maximum errors at two time stations t=0:625 and 1:25
captured with a time step �t=6:25× 10−5 on three di�erent grids. It is seen from the table
that the error decays with O(h4) as expected.

3.2. Problem 2

Equation (2) is now considered here with c=d=0 and a= i (=
√−1) and potential function

�= �(x; y)= − 1 + (1=x2) + (1=y2) [19] in the region 06x, y61 such that it leads to the
unsteady 2-D Schr�odinger equation for wave function � given by

i
@�
@t
+

@2�
@x2

+
@2�
@y2

+ �(x; y)�=0 (8)

The analytical solution of the equation is

�(x; y; t)= x2y2eit

The initial and the boundary conditions can be found from the analytical solution as

�(x; y; 0)= x2y2 and

�(x; 0; t)=�(0; y; t)=0; �(x; 1; t)= x2eit ; �(1; y; t)=y2eit

Since in this case the closed form of �(x; y) is known, we replace the �rst and second-
order spatial di�erence operators of � i; j in Equation (6) by the analytical form of �rst and
second-order partial derivatives of �(x; y). For example �x� i; j= − 4=x3i ; �2x � i; j=12=x4i , etc.
To compare our results with that of Reference [19], we �rst obtain result for � at t=1:0

with h= k=0:1 and �t=0:00007. Comparison of errors from di�erent schemes with this
time step is given in Table III. Here the second and third columns respectively represents
the real and imaginary parts of the errors from the FTCS scheme, column four and �ve
represent the same for Noye–Hayman [8] (5; 5) implicit scheme, columns six and seven the
(3; 3) Paceman–Ratcford ADI [20–22] scheme and the last four columns represent the same
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Table IV. Comparison of the analytical and the numerical solutions with the present scheme at diagonal
locations along with the absolute errors at time t=1:0 with h= k =0:1 and �t=0:05 for problem 2.

Exact Numerical (present) Absolute error

(x; y) Real Imaginary Real Imaginary Real Imaginary

(0.1 0.1) 5:403023e− 5 8:414710e− 5 5:416079e− 5 8:354585e− 5 1:305584e− 7 6:012446e− 7
(0.2 0.2) 8:644837e− 4 1:346354e− 3 8:653134e− 4 1:346018e− 3 8:297390e− 7 3:358712e− 7
(0.3 0.3) 4:376449e− 3 6:815915e− 3 4:377099e− 3 6:816368e− 3 6:503057e− 7 4:533907e− 7
(0.4 0.4) 1:383174e− 2 2:154166e− 2 1:383186e− 2 2:154218e− 2 1:250721e− 7 5:262246e− 7
(0.5 0.5) 3:376889e− 2 5:259194e− 2 3:376922e− 2 5:259211e− 2 3:280010e− 7 1:750155e− 7
(0.6 0.6) 7:002318e− 2 1:090546e− 1 7:002407e− 2 1:090544e− 1 8:954658e− 7 2:174041e− 7
(0.7 0.7) 1:297266e− 1 2:020372e− 1 1:297277e− 1 2:020365e− 1 1:142318e− 6 6:420636e− 7
(0.8 0.8) 2:213078e− 1 3:446665e− 1 2:213087e− 1 3:446655e− 1 8:835922e− 7 1:010154e− 6
(0.9 0.9) 3:544923e− 1 5:520891e− 1 3:544926e− 1 5:520883e− 1 2:526085e− 7 8:366844e− 7

from (9; 9) [5] and the present (9; 5) scheme. The earlier (9; 5) scheme is not stable for
this time step. From the table it is clear that the (9; 9) and present (9; 5) schemes are far
superior to the others. But when we bring the CPU times in the picture it is found that
the present (9; 5) scheme takes only two-thirds the time taken by the (9; 9) scheme. This
clearly shows the higher computational e�ciency of the present scheme. The fact that the
present scheme is able to give a remarkably accurate solution even with time steps as high
as �t=0:05 and h= k=0:1, as shown in Table IV further shows the robustness of the
scheme.

3.3. Problem 3: the lid-driven square cavity �ow

The last test case is the problem of 2-D lid-driven square cavity �ow which is extensively used
as a benchmark for code validation of the incompressible N–S equations. In nondimensional
form, they can be written as

@u
@x
+

@v
@y
= 0 (9)

@u
@t
+ u

@u
@x
+ v

@u
@y
= −@p

@x
+
1
Re

∇2u (10)

@v
@t
+ u

@v
@x
+ v

@v
@y
= −@p

@y
+
1
Re

∇2v (11)

Here u and v are the velocities along x- and y-directions, Re is the Reynolds number and
p is the pressure. Introducing streamfunction  and vorticity !, the above equations can be
written as

!t − 1
Re
(!xx +!yy) + (u!x + v!y) = 0 (12)

 xx +  yy = −!(x; y) (13)
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Figure 3. Comparisons of steady state: (a) horizontal velocity along the vertical
centreline; and (b) vertical velocity along the horizontal centreline for the lid-driven

square cavity �ows from Re=100 to 5000.

with

u=  y and v= −  x (14)

and

!= uy − vx (15)

We use this stream-function-vorticity ( − !) formulation and a time-marching strategy to
reach the steady state. The cavity is de�ned as the square 06x, y61. The �uid motion is
generated by the sliding motion of the top wall of the cavity (y=1) in its own plane from
left to right. Boundary conditions on the top wall are given as u=1, v=0. On all other walls
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(a) (b)

(c) (d)

Figure 4. Steady-state streamfunction contours for the lid-driven square cavity �ows for:
(a) Re = 100 (41× 41); (b) Re=1000 (101× 101); (c) Re=3200 (121× 121); and

(d) Re=5000 (161× 161).

of the cavity the velocities are zero (u= v=0). Further the streamfunction values on all four
walls are zero ( =0). A transient fourth-order compact formula [5] has been used for the
Neumann boundary conditions for vorticity at the walls.
To solve the N–S equations using the proposed scheme, we employ an outer–inner iteration

procedure. In a typical outer temporal cycle, we discretize Equation (12) using (6) with a=Re,
c=Re u, d=Re v and g= �=0. Once ! is obtained, we compute  by discretizing (13) with
the steady-state version of (6). Thus on setting �=  , c=d= �=0= �+t �ij and g= −!, the
fourth-order compact approximation of the Poisson equation (13) becomes

[
�2x + �2y +

1
12
(h2 + k2)�2x �

2
y

]
 ij=

[
1 +

h2

12
�2x +

k2

12
�2y

]
!ij (16)

For both the vorticity and streamfunction equation, the resulting matrix equations are solved
using BiCGStab [17, 18], which constitutes the inner iterations. Once (13) is solved, u and
v in (14) are calculated using a fourth-order compact formula (see Reference [23]). This
constitutes one outer iteration cycle. For the inner iterations, the computations were stopped
when the maximum �-error (� being either ! or  ) between two successive iteration steps
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(a) (b)

(c) (d)

Figure 5. Steady-state vorticity contours for the lid-driven square cavity �ows for:
(a) Re=100 (41× 41); (b) Re=1000 (101× 101); (c) Re=3200 (121× 121);

and (d) Re=5000 (161× 161).

was smaller than 0:5× 10−6. Steady state was assumed to reach when the maximum !-error
between two successive outer temporal iteration steps was smaller than the same tolerance
limit 0:5× 10−6. In all the computations for this problem, zero initial data was used.
As described in Section 2, the closed form of c and d in Equation (1) are not known here.

As such, for the �rst time level, �−
t cij and �−

t dij which are required to calculate Cij and Dij

appearing in (6) were set as zeros. For the subsequent time levels, they can be computed
easily as cij and dij are now known both at the current and previous time levels.
The details of applications of the present scheme to the primitive variable form

(Equations (9)–(11)) of the N–S equations and the extension of it to three-dimensional prob-
lems will be discussed in separate papers in near future.
We now present our computational results for this problem in Figures 3–6 and Table V.

Figure 3 exhibits comparisons of the horizontal velocities on the vertical centreline and the
vertical velocities on the horizontal centreline of the square cavity for Reynolds numbers
ranging from 100 to 5000 and compare our data with that from Ghia et al. [24]. In each
case, our velocity pro�les obtained on relatively coarser grids match very well with Ghia’s
results. It is worthwhile mentioning that the graph for Re=100 was obtained on a grid of
size 21× 21 only and corresponding �t was as high as 0.1.
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Figure 6. Comparison of the convergence history of the !-error of the present (9; 5) scheme
with the (9; 9) scheme of Reference [5] for the lid-driven cavity �ow on 41× 41 grid for

Re=100 (�t=0:01).

Table V. Convergence data till steady-state for the lid-driven cavity
problem for Re=100 and 1000.

100 (41× 41) 1000 (61× 61)
Re Present (9; 5) (9; 9) [5] Present (9; 5) (9; 9) [5]

Iterations 2016 2250 10 211 11 106
CPU (s) 4.617 7.457 138.216 187.328

In Figure 4, we present the well-known streamfunction contours for 1006Re65000 while
Figure 5 shows the corresponding vorticity contours for the same Reynolds numbers. All
these graphs exhibit the typical separations and secondary vortices at the bottom corners of
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the cavity as well as at the top left (which is visible here from Re=3200 onwards). We
can also see evolution of tertiary vortices quite visibly at Re=5000. Both the streamfunction
and vorticity pro�les match with the benchmark results of Ghia et al. [24] and other estab-
lished results [25–28] thereby con�rming that our formulation yields quantitatively accurate
solutions.
In Figure 6 and Table V, we compare the convergence behaviour of the present (9; 5)

scheme with that of the (9; 9) scheme [5]. Figure 6 shows the convergence history of the
!-error for Re=100. Both Figures 6(a) and (b) show quite similar pattern of convergence
history. This is also clear from Table V which show the number of outer iterations (one
outer iteration here is equivalent to an increment �t=0:01 in time) along with the CPU time
to reach the steady-state tolerance limit of 0:5× 10−6. From here, we see that though the
number of outer iterations taken by the (9; 9) scheme is just slightly more than that taken
by the (9; 5) scheme, CPU time-wise, the present scheme is more e�cient than the (9; 9)
scheme.

4. CONCLUSION

In this paper, we develop an implicit unconditionally stable HOC scheme for the unsteady
2-D convection–di�usion equations with variable coe�cients. This (9; 5) scheme requires nine
points at the nth and only �ve points at the (n + 1)th time level. As against an earlier
�rst-order time-accurate (9; 5) HOC scheme, the present scheme is temporally second and
spatially fourth-order accurate. Both Dirichlet and Neumann boundary conditions can easily
be incorporated into the scheme. It is easy to implement and the use of BiCGStab algorithm
for solving the algebraic systems arising at every time level, makes the implicit procedure
computationally e�cient even in capturing transient solutions. To bring out di�erent aspects of
the scheme, we employed it to compute the transient solutions of two 2-D linear convection–
di�usion problems and the time marching steady solution of the 2-D lid-driven cavity �ow
problem. The robustness of the scheme is illustrated by its applicability to a wide range of
problems of varying physical complexities, represented among others, by Reynolds numbers
ranging from 100 to 5000. Computational e�ciency of the present scheme is re�ected in
very low demand on CPU time. The results obtained in all the three test cases with coarser
grids are in excellent agreement with the analytical as well as established numerical results,
underlining the high accuracy of the scheme. The implicit nature of the scheme is fully
exploited in arriving at the steady-state results for the lid-driven cavity problem, where time
steps as high as 0:1 (in conjunction with h= k=0:05) has been employed for some of the
computations. Because of second-order temporal accuracy, higher order spatial accuracy with
a much smaller stencil and computational e�ciency, the scheme has a good potential for
e�cient application to many problems of incompressible viscous �ows. Currently, we are
working on the application of the scheme to the primitive variable formulation of the N–S
equations along with its ADI version.
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